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Abstract: Electrical conductivity (EC) is not only an important index to evaluate the degree of

soil salinization, but also an essential basis for judging whether saline soil can be improved and

assess the effect of improvement efforts. Satellite remote sensing provides much information for

large scale EC inversion of saline soil, which enables the possibility for evaluating the degree and

distribution of soil salinization. Taking the salinized region of western Jilin Province as the study

area, 328 salinized soil samples were collected, and the EC was measured in June 2019. The

construction  of  the  optimal  spectral  parameters  was  based  on  the  correlation  between  the

conductivity  and  the  spectral  reflectivity  of  Sentinel-2  MSI  data;  after  satisfying  the  normal

distribution for the Box-Cox transformation of EC, the inversion model of EC was established by

using linear  regression model,  support  vector  machine (SVM), regression tree (RT),  Gaussian

process regression (GPR), and ensemble tree (ET). The verification results of the model on the

validation set showed that the performance of GPR was optimal (R2 = 0.66, RMSE = 0.48 mS/cm,

MAE=0.52  mS/cm),  which  increased  R2 by  29.04%  compared  with  the  traditional  linear

regression model. Finally, according to the GPR model, the EC results of pixel-level resolution

(10 m × 10 m) of saline soil in western Jilin Province were inversed, which provided a scientific

basis for the study of the distribution characteristics and improvement scheme of saline soil. 
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1 Introduction

Soil salinization and secondary salinization are significant problems faced by China and the

whole world.  A characteristic  of  salinized  soil  is  electrical  conductivity  (EC),  wherein  higher

levels of salt content are strongly correlated with more excellent conductivity; therefore, EC is an

important index to judge the degree of soil salinization(Lian et al., 2010). 

Over the past 20 years, remote sensing has become the most common method for detecting

soil EC because of its reliable real-time results and low cost  (Csillag et al., 1993; Eldeiry and

Garcia, 2008). In many remote sensing methods, large-scale salinized soil monitoring is based on

spectral response characteristics. For the spectral characteristic response band of saline soil, many

scholars have studied different remote sensing satellites and have their conclusions. The optimum

band combination of saline soil monitoring was studied by Dwivedi et al. (1992), and the results

show that the 1, 3, and 5 band combinations of TM data contain the most significant amount of

salinization information. Wu Yunzhao et al. (2003) found that the visible  (0.55-0.77 μm), near-

infrared (0.9-1.03 μm, 1.27-1.52 μm), and short-wave infrared (1.94-2.15 μm, 2.15-2.31 μm, 2.33-

2.4 μm) are the critical bands for identifying the saline soil. Based on the eight bands of ETM+,

Shrestha(2006) established  a  salt  prediction  model  of  normalized  vegetation  index  (NDVI)

containing multiple spectral variables and the normalized salt index (NDSI) and salt data. It was

found that band 7 (middle infrared) and band 4 (near-infrared) had the highest correlation with soil

conductivity. Srivastava et al. (2015) found that the spectra between 1390 nm and 2400 nm are

very sensitive to salinity changes based on the information of visible-near infrared reflectance
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spectra. Meti et al. (2019) found that the combination of short-wave infrared and visible bands of

Sentinel-2 and Landsat-8 significantly improved the correlation of saline soil pH and EC in the

arid regions of northern India. Davis et al. (2019) used Landsat OLI and Sentinel-2 MSI to reverse

the conductivity of saline soil, and the result showed that MSI was superior to OLI and that the

visible light band was more sensitive to soil salinity. 

On this basis, many others have studied the model algorithm of the quantitative relationship

between soil salinity and spectral characteristics. To sum up, the main modeling methods include

linear regression, least squares, and random forest. Allbed et al. (2014a) established the correlation

between  the  spectral  index  and  conductivity  based  on  IKONOS  images.  They  used  linear

regression to predict the spatial change of soil salt in the Hassa oasis. Nawar et al. (2015) used

multivariate adaptive regression splines to construct a soil spectrum and EC prediction model.

Besides, Gorji et al.  (2017) obtained the spatial distribution of saline soil around Lake Tuz in

Turkey based on SI regression analysis. Zhang Suming et al. (2018) used the Kenli area of the

Yellow River Delta as their research area. They combined the measured and multi-time phase

remote sensing data to analyze and construct  their salt  inversion model. Farifthe et al.  (2007)

predicted the salt content of soil utilizing the partial least square regression and artificial neural

network. Fan et al. (2016) carried out soil salt inversion and mapping in the Yellow River Delta

region based on the PLSAR model using 30 years  of  multi-source Landsat  data.  Wang et  al.

(2019a) used partial least squares regression and random forest inversion to develop a salinity map

of the Ebinur Lake area in northwest China, based on the extraction of conductivity and multi-

band spectral  indexes  of  saline  soil  from 116 sampling  points.  Li  et  al.  (2019)  extracted  ten

sensitive variables of EC from Landsat using random forest to establish a soil salinity prediction
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model. Wang et al. (2019b) combined soil salinity data with spectral data in order to achieve soil

salinity estimation through constructing a random forest model in arid and semiarid regions. The

above studies show the feasibility of quantitative analysis of soil salt. However, hyperspectral data

are still obtained by data, and the application of hyperspectral data in regional soil salinization

monitoring is limited by some practical factors, such as small image coverage area and others.

To sum up, in previous studies, the quantitative estimation of the soil salinity by spectrum

analysis is realized by screening the sensitive wavebands or the known spectral indexes as the

modeling factors. However, this method only takes into account the relationship between the soil

salinity and the sensitive waveband or the sensitive spectral index, and then construct the optimal

linear  and  nonlinear  models.  However,  they  forgot  considering  whether  the  distribution  of

variables will affect the accuracy of models before modeling.

Based  on  Sentinel-2  MSI  spectral  data  and  measured  EC  of  saline  soil,  the  Box-Cox

transformation of the conductivity which does not satisfy the normal distribution was performed,

the relationship between different spectral parameters and transformed EC data of saline soil is

explored, and the optimization of modeling variables is performed. On this basis, the nonlinear

estimation model of EC is constructed by using a machine learning algorithm, and we get an

inversion method that is matched with EC of carbonated (soda) saline soil in the western Jilin

Province. In order to improve the inversion accuracy of EC of saline soil in the western Jilin

Province,  and  to  provide  data  support  for  accurate  monitoring,  evaluation,  improvement,  and

utilization of saline soil.

2 Materials and Methods

2.1 Site descriptions and soil sampling

The western part of Jilin is part of the Songnen Plain, with the range of 121°38′-126°11′E,
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43°59′-46°18′N, as shown in Figure 1, the total area is approximately 43360 square kilometers,

and the terrain is flat. This area belongs to temperate continental monsoon climate; the average

annual precipitation and annual evaporation are present as 400-500 mm and 1000-2000mm. (Liu

et  al.,  2015;  Xu  et  al.,  2018).  Soil  evaporation  is  intense,  which  makes  it  easy  for  salt  to

accumulate at the surface. This severely imbalanced evaporation-precipitation ratio, coupled with

the influence of local topography, hydrogeological conditions, and human activities, makes the

degree of salinization in this area grave. The EC results of pixel-level resolution (10 m × 10 m) of

saline soil in western Jilin Province were inversed.

Carried out the field experiment from June 20–28, 2019, and selected 328 experimental sites.

In order to reduce the influence of mixed pixels, taken three points near each sampling point, and

collected the soil samples by ring knife. After each soil sample was dried and sifted through 1 mm

mesh, three soil samples from each sampling site were uniformly mixed into 10 g samples to

prepare soil suspensions with a soil/water ratio of 1:5, the soil suspension was set aside for about 3

hours, and EC was measured using a conductivity meter (LEICI, Model DDS-307A).

In order to construct and verify the EC inversion model with pixel-level resolution (10 m ×

10 m) of saline soil in western Jilin Province, 328 sample points were randomly grouped, of which

randomly used two-thirds total 219 points for modeling, which was called the training dataset, and

used the  remaining  one-third  total  109 points  for  validation of  the model,  which were called

validation dataset.

2.2 Sentinel-2 MSI spectral information extraction and feature construction

In order to coincide with the field sampling time, the Sentinel-2 MSI L1C multispectral data

of the study area on June 23, 2019 was selected, as shown on the right side of Figure 1(false-color
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composite), and extracted the reflectivity of each band corresponding to the sampling points after

atmospheric correction. The band parameters are shown in table 1.

Table 1 Spectral bands of Sentinel-2 MSI sensor

Acronym Band Band center /nm Band width/nm Spatial resolution/m

B1 Coastal 443 45 60

B2 Blue 492 98 10

B3 Green 560 46 10

B4 Red 665 39 10

B5 Vegetation Red Edge 703 20 20

B6 Vegetation Red Edge 739 18 20

B7 Vegetation Red Edge 779 28 20

B8 NIR 833 133 10

B8A Vegetation Red Edge 864 32 20

B9 Water vapour 943 27 60

B10 SWIR- Cirrus 1376 76 60

B11 SWIR 1610 141 20

B12 SWIR 2186 238 20

The construction of spectral parameters includes two methods; one is generated by sensitive

band combination operation (addition, multiplication), the other is to evaluate the degree of soil

salinization  by  using  the  existing  spectral  indexes.  Combined  these  results  with  the  existing

research  results,  and  selected  the  following spectral  indexes  for  correlation  analysis  with  EC

(formula (1)), including soil salt index SI1, SI2, SI3 (Allbed et al., 2014a; Douaoui et al., 2017;

KHAN et al., 2005), SI4, SI5, NDSI, and ratio salt index (SI-T). The calculation formula for each

index shown in Table 2. Calculation formula of correlation coefficient present as follows:

                   R=

∑
i=1

n

(x i−x)( y i− y )

√∑
i=1

n

(xi−x)
2 √∑

i=1

n

( y i− y )
2

                           (1)
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Table 2 Spectral Index Construction

Spectral Index Formula

Soil salinity index SI1 SI 1=√G×R
Soil salinity index SI2

SI 2=√G2
+R2

+NIR2

Soil salinity index SI3
SI 2=√G2

+R2

Soil salinity index SI4

Soil salinity index SI5

SI 4=(SWIR×R)/G

SI 5=(B−SWIR2)/(B+SWIR2)

Normalized salinity index (NDSI) NDSI=(R−NIR)/(R+NIR)

Ratio salt index (SI-T) SI−T=R/NIR

2.3 Modeling methods and evaluation index

Our study showed a modeling flow chart of remote sensing inversion with EC in figure 2.

Firstly,  a training set  and single-band reflectance from Sentinel-2 MSI data  were analyzed to

screen  out  the  sensitive  bands. Then  the  spectral  parameters  were  constructed  based  on  the

sensitive band and screened the optimal spectral parameters. We performed a pre-modeling test

dataset distribution that satisfies the Gauss-Markov normality hypothesis. We found the optimal

transformation  for  the  data  that  does  not  satisfy  the  condition,  thus  improving  the  formality,

symmetry, and homogeneity of variance of the data distribution. Finally, using the sensitive band

and the optimal spectral parameters as the independent variables, the measured EC was used as the

response variables to construct the inversion model and obtain more accurate modeling results, as

shown in Figure 2.

2.3.1 Box-Cox Transform

In  practical  applications,  the  response  variables  are  often  not  following  the  normal

distribution, so it is not suitable for data analysis directly. Box-Cox transform was proposed by

Box and Cox(1964) for the nonlinear transformation of response variables. By determining an

optimal parameter λ,  the non-normal data  is  transformed into approximately normal data,  and
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then,  the  transformed  data  is  regressed.  The  Box-Cox  transformation  of  y  (y  >0)  can  be

represented by formula (2).

                    y
(λ)

={
y λ−1
λ
, λ≠0

ln y , λ=0
                                (2)

where y is the raw data, λ is the parameter of the change to be determined.

Box-Cox transform determines the optimal λ value by finding the maximum Lmax ( λ ) of the

likelihood  function.  In  order  to  calculate  the  pure  logarithm on  both  sides  of  the  likelihood

function, the term A-independent constant is omitted. Formulas (3) and (4).

                  ln ⁡¿                      (3)

                           J ( λ , y )=∏
i=1

n

|d y i
(λ)

d y i |                               (4)

Where MSE is the mean square error, n is the data quantity.

2.3.2 Linear regression model

The traditional linear regression model is as follows:

y=ε+β1 x1+β2 x2+⋯+βk xk                         (5)

Where y is the response variable of the model,x1−xk are independent variables, ε  is a constant,

and β0, β1,…, βk are undetermined coefficients. In this paper, x is the spectral index of Sentinel-2

MSI data, y is the Box-Cox transform result of the measured EC.

2.3.3 Machine learning models

Because of the influence of mixed pixels and atmospheric radiation, the relationship between

spectral parameters and EC of saline soil may be nonlinear, so the machine learning algorithm

model is considered to invert the EC of saline soil. At present, common machine learning models
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include the following:

1) Support Vector Machine

V. Vapneilk and Cortes proposed a support vector machine (SVM) (Cortes and Vapnik, 1995).

For regression problems that are not suitable for linear models, SVM can improve the accuracy of

regression prediction by mapping the low-dimensional training dataset to the high-dimensional

space construction model, and it has good generalization ability for small sample data sets. 

2) Regression Tree

The regression tree(RT) is a binary decision tree for regression analysis (Mingers, 1989). The

feature selection is carried out recursively, and the given input variable predicts the probability

distribution of the output variable, and then, the binary regression tree is generated. The regression

tree is unstable with big data sets, and the weak change of the training dataset may lead to a

change in the tree structure.

3) Gaussian Process Regression

Gaussian process regression (GPR) is a new machine learning algorithm, which is a non-

parametric regression probability model based on Bayesian and statistical learning theory. It is

assumed  that  the  input  of  the  model  isx,  and  the  output  isf (x).  A  set  of  input  sets

{x i∨i=1,2 ,…,n } obtains an output set  f (x) through a  Gaussian process  regression model.

Under the assumption of the mean of zero, the distribution form of  f ( x ) can be expressed as

follows:f ( x )−N (0 ,K (θ , x , x ' )) , K (θ , x , x' ) is  a  covariance  matrix  with  super  parameters

(some parameters of kernel functions). 

4) Ensemble Tree
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The ensemble tree (ET) is a regression-lifting algorithm based on the regression tree and

using the forward distribution and adding. This ensemble learning method constructs a prediction

model by weighting several regression tree results when the instance is predicted. Compared with

the regression tree, better results may be obtained for some datasets, thus improving prediction

performance.

2.3.4 Evaluation indicators

In  order  to  evaluate  the  accuracy  of  the  inversion  model,  the  method  of  V fold  cross

verification (VFCV)(Geisser, 1975) is used to model the data, and the determination coefficient

R2,  root  mean square error (RMSE) and mean absolute  error (MAE) are used to  evaluate  the

model. The calculation method is shown in the formulas (6), (7), and (8).

                         R2
=

∑
i=1

N

( f ¿¿ i− y )2

∑
i=1

N

( y¿¿ i− y )2
¿

¿                             (6)

                        RMSE=√ 1
N∑

i=1

N

( y¿¿ i−f i)
2
¿                        (7)

                        MAE=
1
N
∑
i=1

N

¿( y¿¿ i−f i)∨¿¿¿                         (8)

Where y i represents a true value, f i represents a predicted value, y  represents a mean value, and

N represents a sample size.

The principle of the VFCV method is to divide the data set into V parts, one from V parts as

verification,  the  remaining  V-1  as  training,  repeat  V times,  and take  the  mean value  of  each

verification  result  as  the  final  result  to  find  the  optimal  model.  VFCV  can  improve  the

generalization ability of the model to a certain extent. In this study, the V value is 10. According to
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research experience, it is found that tenfold cross-verification can balance deviation and variance,

which  is  the  best  choice  to  obtain  model  error  estimation.  The  closer  the  R2 is  to  1  in  the

evaluation parameter, the higher the fitting accuracy of the model; The closer the RMSE is to 0,

the better the performance of the model, the smaller the difference is between the measured value

and the predicted value;  compared with RMSE, MAE has better  robustness to  outliers  in  the

dataset and does not reduce the accuracy of the model as a whole.

3 Results 

3.1 EC Measurement results

The statistical results of the measured EC for the 328 samples collected in the field are shown

in Table 3. It can be seen from the table that the range of EC is 0.66 mS/cm, the standard deviation

ranges from 0.06 to 5.87 mS/cm, and the coefficient of variation is significant, which indicates

that the sample points have very high spatial heterogeneity.

Table 3 EC (mS/cm) Statistical Table

Maximum Minimum Mean Standard deviation Coefficient of variation (%)

All data

N=328 5.87 0.06 0.66 0.91 138

Training dataset

N=219
5.87 0.06 0.72 0.98 136

Validation dataset

N=109
5.79 0.08 0.53 0.73 137

3.2 Selection of sensitive bands

In this paper, the correlation between the measured EC data and the single-band spectral

reflectance from the Sentinel-2 MSI was analyzed (p<0.01). The correlation coefficient R values

were obtained, as shown in Table 4 below (p<0.01). The results show that the B2, B3, B4, and B8

bands were sensitive bands. 

Table 4 Correlation between EC and spectral reflectance of Sentinel-2 MSI 

Band B2 B3 B4 B5 B6 B7 B8 B8A B11 B12

11
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200

201
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203

204
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207

208

209

210
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R 0.42 0.43 0.41 0.34 0.29 0.28 0.42 0.24 0.15 0.20

N=219, N is number of samples

3.3 Construction of optimal spectral parameters

In order to consider the spectral characteristics synthetically, the spectral parameters of the

inversion model combined B2, B3, B4 and B8 bands and spectral index SI1, SI2, SI3, SI4, SI5,

NDSI, and SI-T by multiplication. Table 5 shows the correlation coefficient R (p<0.01) between

the  different  spectral  parameters  based  on  the  Sentinel-2  MSI  data  and  the  saline  soil  EC.

Comparing Tables 3 and 4, the correlation between EC and spectral parameters of saline soil was

higher than that of a single band reflectivity, and the band combination of R > 0.40 was selected as

the  spectral  parameter  of  the  estimation  model.  Thus  B2B3B4,  B2B3B8,  B3B8,

B3B4B8, B2B3, B2B8, SI2, SI1and SI3 were chosen as the optimal spectral parameters.

Table 5 EC correlation analysis with spectral parameter reflectance

Spectral parameters B2×B3×B4 B2×B3×B8 B3×B8 B3×B4×B8 B2×B3 B2×B8 SI2

R 0.52 0.51 0.48 0.48 0.47 0.43 0.42

Spectral parameters SI1 SI3 B2×B4 NDSI SI_T SI5 SI4

R 0.41 0.41 0.38 0.32 0.33 0.23 0.14

N=219, N is number of samples

3.4 Box-Cox parameter λ estimation results

By testing the data of response variables and independent variables involved in modeling, we

can see that the response variable EC does not conform to the normal distribution, as shown in

Figure  3.  The  maximum  likelihood  estimation  method  proposed  by  Box-Cox  was  used  to

determine the parameter λ value. For different λ values (−2≤ λ≤2), the maximum value Lmax ( λ )

of the likelihood function was calculated by the least square estimation of the linear regression

model, which is expressed as Log-Likelihood =ln ⁡(Lmax ( λ )), with λ as the horizontal axis and
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Log-Likelihood as the longitudinal axis. The results are shown in Figure 4 and Table 6. It can be

seen from the results that when λ =0, Log-Likelihood was the largest. According to formula (1),

the EC = ln (EC) after the Box-Cox transform was calculated as EC_bc, and the data are close to a

normal distribution, as shown in Figure 3b).

Table 6 Maximum value of likelihood function and λ statistical table

λ -2.00 1.75 -1.50 -1.25 -1.00 -0.90 -0.80

Log-Likelihood -507.38 -449.76 -396.97 -349.42 -307.68 -292.79 -279.01

λ -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10

Log-Likelihood -266.44 -255.15 -245.28 -236.93 -230.29 -225.53 -222.87

λ 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Log-Likelihood -222.57 -224.90 -230.16 -238.62 -250.53 -266.02 -285.13

Λ 0.70 0.80 0.90 1.00 1.25 1.50 1.75

Log-Likelihood -307.78 -333.75 -362.77 -394.49 -483.33 -582.14 -687.60

3.5 Linear regression models for the EC retrieval

Using  EC  and  EC_bc  data  as  dependent  variables  of  linear  regression  model  in  2.3.2,

respectively. The regression model and verification accuracy were obtained, as shown in Table 7

and Table 8. It can be seen from the table that the regression model with single band and spectral

parameters as independent variables and EC_bc as dependent variables had the highest accuracy,

and the R2 of the verification accuracy was 0.51. Therefore, EC_bc was used to participate in the

modeling. The regression model and verification accuracy were obtained, as shown in Table 7 and

Table 8. 

Table 7 Linear inversion model before and after soil conductivity transformation

Variable Regression model Model

accuracy

R2 

Verification

accuracy 

R2

Single band EC=-1.266+0.001B2+0.002B3-0.001B4+0.003B8 0.21 0.21

EC_bc=-3.078+0.001B2+0.001B3-0.001B4+7.9010-5B8 0.32 0.39

Spectral

parameters

EC=1.962+1.67310-8(B2B3)-1.16010-

7(B2B8)+2.00810-7(B3B8)+2.10910-

11(B2B3B4)+5.07310-11 (B2B3B8)+1.17810-

0.37 0.37

13

237

238

239

240

241

242

243

244

245

246

247

248

249

250



11(B3B4B8) +0.001SI2 -0.001SI3

EC_bc =-0.434+4.58610-8(B2B3) -1.86210-7 

(B2B8)+1.71110-7 (B3B8)+2.83910-11 

(B2B3B4)+3.72410-11 (B2B3B8)+1.65810-11 

(B3B4B8) +0.001SI2 -0.011SI3

0.46 0.46

Single band

and 

Spectral

parameters

EC=0.543+0.001B2+0.002B3+0.001B4+0.003B8+3.790

10-8 (B2B3) -4.19610-7(B2B8) +2.24610-7 

(B3B8)+1.44810-11 (B2B3B4)+4.78910-11 

(B2B3B8) +3.19110-11(B3B4B8) -0.004SI2

0.42 0.45

EC_bc =1.489+0.001B2+0.001B3+0.001 B4+0.003 B8+ 

7.40310-8 (B2B3) -4.35410-7 (B2B8)+ 1.96210-

7 (B3B8)+1.73110-11 (B2B3B4)+3.46410-11 

(B2B3B8) +3.90010-11 (B3B4B8) -0.004SI2

0.49 0.51

N=219, N is number of samples

Table 8 Evaluation Indexes of linear inversion models of EC_bc

Variable

Training dataset Validation dataset

RMSE

/(mS/cm)

R2 MAE

/(mS/cm)

RMSE

/(mS/cm)

R2 MAE

/(mS/cm)

Single band 0.55 0.32 0.50 0.56 0.39 0.51

Spectral parameters 0.52 0.46 0.48 0.55 0.46 0.49

Single-band and

Spectral parameters
0.53 0.49 0.44 0.56 0.51 0.44

3.6 Machine learning models for the EC retrieval 

The optimal spectral parameters selected from 3.3 were used as the input, and the EC_bc was

used as the output to build the model with five algorithms of SVM, RT, GPR, and ET, respectively.

The inversion results of each model to the validation dataset are shown in Figure 5. In order to

quantitatively describe the inversion accuracy of the model, the evaluation index results of the five

models are shown in Table 9.

Table 9 Evaluation Indexes of five models

Model

Training dataset Validation dataset

RMSE/(mS/cm) R2 MAE/(mS/cm) RMSE/(mS/cm) R2 MAE/(mS/cm)

LINEAR 0.53 0.49 0.44 0.56 0.51 0.44

SVM 0.43 0.58 0.48 0.44 0.65 0.53

RT 0.50 0.58 0.57 0.52 0.57 0.53

GPR 0.42 0.61 0.58 0.48 0.66 0.52
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ET 0.51 0.61 0.53 0.49 0.62 0.54

As can be seen from Table 9, the traditional linear regression model had the worst results

among the evaluation indexes of the five models. Among the four machine learning models, the R2

of  the  GPR model  was  0.66,  the  RMSE  was  0.48,  and  the  MAE  was  0.52.  The  prediction

performance of the GPR model was the best, SVM was the second, and RT was the lowest. In the

comprehensive view, the accuracy of the five models for the inversion of the saline soil EC was

GPR> SVM> ET> RT> LINEAR. Figure 6 shows the comparison between the measured values

and the predicted values of 109 points in the data set verified by the GPR model.

3.7 The inversion results of saline soil EC in the west of Jilin Province

In order to reflect the EC of the large-area of saline soil in the west of Jilin, according to the

most accurate GPR model in 3.6, based on the Sentinel-2 MSI data of June 23, 2019, EC of the

pixel-level  resolution of  the saline soil  in  the western part  of  Jilin  Province was obtained by

inversion in 2019. The results are shown in Figure 7.

In  order  to  quantify  the  degree  of  soil  salinization  in  this  study  area,  according  to  the

classification criterion of Kissell and Sonon (2008), the degree of salinization of inversion EC was

graded and mapped. The results are shown in Figure 8. It can be seen from the results that the soil

salinization in the study area tends to increase gradually from east to west. Mild saline soil was

mainly distributed in Qianguo County, Changling County, and Fuyu City. Moderate and severe

saline soil was mainly distributed in Zhenlai County, the junction of Da'an City, Qianan County,

and Tongyu County,  and a  small  area of  extremely  saline  soil  was  distributed  in  Da'an City,

Qianan County, and Zhenlai County.

In order to quantitatively describe the area of the soil with different degrees of salinization,

the areas of several salinized soils in Figure 8 were counted, and the results are shown in Table 10.
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According to the statistical data, after many years of improvement, the degree of soil salinization

in the western part of Jilin Province in 2019 was mainly mild, accounting for 54.48% of the total

area,  moderate  and  severe  salinization  covered  33.29% of  the  area,  and the  extremely  heavy

salinization was 2.26% of the study area.

Table 10 Statistics of soil salinity grades in western Jilin Province in 2019

Soil Salinity

Level(mS/cm)

Non-Saline 

Soil (0-0.15)

Low Salinity

(0.16-0.50)

Medium 

Salinity 

(0.51-1.25)

Strongly 

Salinity 

(1.26-1.75)

Very High 

Salinity 

(1.76-2.0)

Excessively 

High Salinity 

(>2.0)

Area (km2) 653.72 3572.07 1975.91 206.71 79.68 68.06

Percent (%) 9.97 54.48 30.14 3.15 1.22 1.04

4. Discussion

When the spectral index is selected, it is an important prerequisite that invalid information

generated by the superimposed spectrum can be compressed,  and the practical information of

saline soil characteristics can be highlighted in order to improve the accuracy of the model. At

present, the commonly used spectral indices are the NDVI, the NDSI, and the others mentioned

above.  We  believe  that  on  the  one  hand,  these  indices  did  not  use  the  sensitive  band  to

superimpose useful spectral information to delve into the spectral characteristics of saline soil; on

the other hand, the presence of alkali-resistant crops such as soda can lead to the error of using

NDVI  to  retrieve  soil  salinization. Allbed  et  al.  (2014b)  expressed  a  similar  view  that  salt

recognition based on vegetation index would not work in bare land. Therefore, the index of NDVI

was avoided in this paper. 

We  performed  a  Box-Cox  transformation  on  the  EC  data  of  the  original  saline  soil  to

determine an optimal λ, thereby transforming the non-normal data into approximately normal data.

Subsequently, the single-band and spectral parameters were used as independent variables, and the
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regression model was obtained after the Box-Cox transformation. After verification, the accuracy

was R2  = 0.51, which is a particular improvement over the accuracy of 0.45 without conversion

(Section  3.5  Table  6).  Besides,  the  spectral  parameters  were  constructed  by  multiplying  the

sensitive band by Box-Cox transforming the EC data of the original saline soil and combining the

single band as the modeling factor, the selectivity of the modeling was increased, and the synergy

between the spectral segments was enhanced.

In existing studies, researchers (Atman et al.,2018; Bannari et al., 2018) have found that the

short-wave infrared band of Sentinel-2 MSI, which can distinguish different grades of saline soils

by combined with visible light bands, is more sensitive to saline soils in arid regions. Meti et al.

(2019) once again demonstrated that the combination of visible light bands of Sentinel-2 MSI and

short-wave infrared could significantly improve the correlation with soil EC (R=0.60-0.70). Also,

several studies have demonstrated the potential of the short-wave infrared band of Sentinel-2 MSI

in distinguishing saline soils (Bannari et al., 2016; Bannari et al., 2008; FARIFTEH et al., 2007).

Researchers  (Bannari  et  al.,  2018)  have  found  that  light  with  short-wavelength  infrared

wavelengths can easily detect soils that are predominantly rich in sulfate minerals, chlorides, and

small amounts of bicarbonate. According to this, we constructed a spectral index composed of

short-wave infrared and visible light bands (Section 2.2 Table 1 SI4, SI5). RSI4=0.14, RSI5=0.23.

However, the results show a poor correlation, indicating that the above conclusions do not apply to

saline soils in western Jilin. We speculate that the western part of Jilin belongs to the Songnen

plain, and the type of saline soil is inland soda saline soil, which main salt composition is NaHCO3

and Na2CO3 with  containing  a  small  amount  of  sulfate  and  chloride,  thus  has  present  strong

alkalinity. We know that saline soils in the arid area, which mainly contain chloride-sulfate saline
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and  sulfated  soils,  belong  to  slightly  alkaline  soils.  Due  to  the  differences  in  the  chemical

composition, the characteristic bands of different types of saline soils are different.

At the same time, because of the different driving factors and formation mechanism of saline

soil,  there  are  many  factors  affecting  salt,  which  lead  to  the  complex  nonlinear  relationship

between salt and spectrum. Therefore, the linear regression model is not a good reflection of this

relationship; the machine learning algorithm solves the nonlinear problem of the model, which can

effectively improve the accuracy of saline soil conductivity inversion. In the machine learning

algorithm, the GPR model performs better  (Boedecker et al., 2014; Rasmussen et al., 2005)  in

calculating the probability of the super-parameter acquisition and the variable output compared

with the common SVM, the neural network, and RT. The model uses a Gaussian process to deduce

the function distribution of the training dataset, obtains the super optimal parameters based on the

kernel function, and uses the training dataset to train the super parameters to realize the prediction

output; the model works better for high-dimensional small samples and non-linear regression.

5 Conclusion 

In  this  study,  according  to  the  correlation  of  electrical  conductivity  characteristics  and

spectral reflectance of each band of Sentinel-2 MSI, the sensitive band was screened, and the

optimal spectral parameters were constructed by mathematical operations such as multiplying the

sensitive band. The EC_bc was obtained by the Box-Cox transformation of EC data, which did not

satisfy  the  normal  distribution,  and  we  constructed  the  linear  regression  models  of  EC  with

spectral parameters and a model of EC_bc with spectral parameters, respectively. The verification

results showed that the accuracy of the model R2 after EC transformation was improved from 0.45

to 0.51. Therefore, we established the nonlinear inversion models of GPR, ET, SVM, and RT of
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EC_bc. Then using validation set, the inversion accuracy of salt soil EC_bc was as follows: GPR

> ET > SVM > RT > LINEAR. The most accurate GPR model for the validation dataset inversion

R2 was  0.66,  proving  the  validity  of  the  model.  Finally,  according  to  the  model,  the  pixel

resolution  results  of  saline  soil  EC  were  inversed  in  western  Jilin  Province  in  2019,  which

provides necessary data support for evaluating the salinization degree of soil and the effectiveness

of the improvement scheme.
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